Difficulty level

۱۸/	^ r	ks	h	_	^	4		2
vv	C) F	K.S	п	e	е	T	-	

Advanced	Pers	pectives	on	Life	Cyc	cles

Name:	
Date:	· · · · · · · · · · · · · · · · · · ·

Part 1: Analytical Questions

- 1. Explain why organisms like amphibians and insects undergo drastic physical changes (metamorphosis) in their life cycles.
 - What ecological advantages does this provide?
- 2. Discuss how life cycles are adapted to different habitats.
 - Compare the life cycles of an aquatic organism (e.g., frog) and a terrestrial organism (e.g., bird).
- 3. How do organisms ensure the survival of their offspring during vulnerable life stages?
 - Give examples of adaptations that protect eggs, seeds, or young individuals.

Part 2: Life Cycle Analysis

Complete the chart by identifying specific details about each organism's life cycle.

Organism	Key Stages	Habitat at Each Stage	Adaptations for Survival
Butterfly	$Egg \to \underline{\hspace{1cm}} \to Pupa \to Adult$		
Frog	$\underline{\hspace{1cm}}$ \rightarrow Tadpole \rightarrow $\underline{\hspace{1cm}}$ \rightarrow Adult		
Mango Tree	Seed \rightarrow \rightarrow Mature Plant \rightarrow Fruit		
Salmon	Egg \rightarrow Fry \rightarrow \rightarrow Adult \rightarrow Spawning		

Part 3: Critical Thinking Scenario

A scientist observes a significant decrease in the adult stage of a butterfly species in a local ecosystem.

- 1. Propose three possible reasons for this decline.
- 2. How might this impact plants that rely on butterflies for pollination?
- 3. Suggest two conservation strategies to protect this butterfly species.

Part 4: Fill in the Gaps

1.	P P
	include the stage.
2.	The main function of a plant's is to disperse seeds and ensure species continuation.
3.	In aquatic organisms like frogs, the stage is fully adapted to life in water, but the adult stage is adapted to

Part 5: Ecosystem Connection

- 1. How does the life cycle of a predator (e.g., hawk) influence the life cycles of its prey (e.g., rabbits)?
- 2. Give examples of life cycle synchrony in ecosystems, such as flowers blooming during specific times to match pollinator activity.

Part 6: Experiment Design

Objective: Investigate the effect of light on the germination stage of a plant's life cycle.

- 1. Write a hypothesis for this experiment.
- 2. Identify:
 - Independent variable
 - Dependent variable
 - Controlled variables
- 3. Briefly outline the procedure for your experiment.

Part 7: Research-Based Inquiry

Research one of the following organisms and summarize its unique life cycle in a short essay (200–250 words):

- Cicada (known for its long larval stage underground).
- Jellyfish (which alternates between polyp and medusa stages).
- Bamboo (known for flowering after decades and dying afterward).

Part 8: Diagram and Interpretation

Study the provided diagram of a frog's life cycle (or create one if no image is available). Answer:

- 1. Which stage is most dependent on water for survival, and why?
- 2. How does the transition from tadpole to adult frog reflect the organism's adaptation to a dual habitat?
- 3. Predict how pollution in water bodies might disrupt this life cycle.

Part 9: Ethical Considerations

Some species with complex life cycles (e.g., turtles, frogs) are harvested by humans for food or other resources.

- 1. What ethical concerns arise when disrupting these life cycles?
- 2. How can sustainable practices ensure the survival of such species while meeting human needs?

Bonus Thought Question:

Life cycles are shaped by millions of years of evolution. If an organism's habitat drastically changes, how might its life cycle evolve over time?